1 Ziel der einfaktoriellen Varianzanalyse (ANOVA)
Die ANOVA (auch: einfaktorielle Varianzanalyse) testet drei oder mehr unabhängige Stichproben auf unterschiedliche Mittelwerte. Die Nullhypothese lautet, dass keine Mittelwertunterschiede (hinsichtlich der Testvariable) existieren. Demzufolge lautet die Alternativhypothese, dass zwischen den Gruppen Unterschiede existieren. Es ist das Ziel, die Nullhypothese zu verwerfen und die Alternativhypothese anzunehmen. Die Varianzanalyse in R kann man mit wenigen Zeilen Code durchgeführt werden. Es gibt auch Tutorials in SPSS und Excel.
2 Voraussetzungen der einfaktoriellen Varianzanalyse (ANOVA)
Die wichtigsten Voraussetzungen der ANOVA sind:
- mehr als zwei voneinander unabhängige Stichproben/Gruppen
- metrisch skalierte y-Variable
- normalverteilte Fehlerterme innerhalb der Gruppen
- Homogene (nahezu gleiche) Varianzen der y-Variablen der Gruppen (deskriptiv oder Levene-Test)
3 Durchführung der einfaktoriellen Varianzanalyse in R (ANOVA)
3.1 Das Beispiel
Im Beispiel prüfe ich drei unabhängige Trainingsgruppen (wenig, durchschnittlich, stark) auf deren mittleren Ruhepuls. Ich vermute dahingehend Unterschiede, dass Probanden der verschiedenen Trainingsgruppen im Mittel unterschiedliche Ruhepulse haben. Das kann man auch gerichtet formulieren: Probanden aus den aktiveren Trainingsgruppen haben im Mittel einen niedrigeren Ruhepuls. Die ANOVA vermag aber nicht einseitig zu testen, da dies nur bei genau 2 Gruppen (z.B. t-Test) funktioniert.
3.2 Deskriptive Voranalyse
Nach dem Einlesen der Daten kann direkt ein deskriptiver Vergleich gestartet werden, der im Rahmen der ANOVA nicht zwingend notwendig ist, beim Schreiben der Ergebnisse hilft. Hierzu nutze ich das Paket “psych”, was ich mit “install.packages” installiere und mit library(psych) lade. Dann lasse ich mir die deskriptiven Statistiken ausgeben. Das Format ist describeBy(Testvariable, Gruppenvariable).
install.packages("psych")
library(psych)
describeBy(data_anova$Ruhepuls,data_anova$Trainingsgruppe)
Hier erhält man folgenden Output:
Descriptive statistics by group
group: 0
vars n mean sd median trimmed mad min max range skew kurtosis se
1 13 68 9.6 69 68.64 10.38 50 79 29 -0.42 -1.26 2.66
------------------------------------------------------------------------------
group: 1
vars n mean sd median trimmed mad min max range skew kurtosis se
1 13 61 9.82 58 60.64 10.38 48 78 30 0.51 -1.17 2.72
------------------------------------------------------------------------------
group: 2
vars n mean sd median trimmed mad min max range skew kurtosis se
1 13 52.85 9.74 52 52.36 13.34 40 71 31 0.28 -1.21 2.7
Hier ist schon erkennbar, dass sich die mit fett markierten Mittelwerte über die Gruppen hinweg unterschieden. Die am wenigsten trainierte Gruppe hat einen mittleren Ruhepuls von 68, die durchschnittlich trainierte Gruppe von 61 und die stark trainierte Gruppe von 52,85.
Die Varianzhomogenität kann man hier auch schon erkennen, da sd (= Standardabweichung = Wurzel der Varianz) in etwas gleich groß sind. Die Frage, die uns die ANOVA nun beantworten muss: Sind diese beobachteten Mittelwertunterschiede statistisch signifikant?
3.3 Die ANOVA rechnen und interpretieren
Hierzu wird die aov()-Funktion verwendet:
anova_training <- aov(data_anova$Ruhepuls~data_anova$Trainingsgruppe)
summary(anova_training)
Mit “anova_training <- aov(…)” definiere ich mir zunächst das ANOVA-Modell, welches ich mir mit summary(anova_training) ausgeben lasse. Der Name “anova_training” kann hierbei vollkommen frei gewählt werden.
Nun kann den Output interpretieren:
Df Sum Sq Mean Sq F value Pr(>F)
data_anova$Trainingsgruppe 1 1493 1493 16.22 0.000269 ***
Residuals 37 3405 92
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Hier ist eigentlich nur ein Wert wirklich interessant: der p-Wert findet sich unter Pr(>F) und ist hier 0,000269. Das ist deutlich kleiner als 0,05 und somit kann die Nullhypothese von Gleichheit der Mittelwerte über die Gruppen hinweg verworfen werden. Das berichtet man mit F(1, 37) = 16,22; p < 0,001.
Die entscheidende Frage ist nun, zwischen welchen der drei Trainingsgruppen ein Unterschied existiert. Es ist denkbar, dass nur zwischen zwei Gruppen ein Unterschied existiert oder zwischen allen 3. Hierzu braucht es eine post-hoc-Analyse.
3.4 Post-hoc-Analyse: paarweise Gruppenvergleiche
Diese führt man mittels paarweisen t-Tests (“pairwise.t.test()“) durch. Allerdings muss hierbei der p-Wert angepasst werden, da das mehrfache Testen auf dieselbe Stichprobe zu einem erhöhten Alphafehler führt. Dies hat wiederum zur Folge, dass die Wahrscheinlichkeit einen Fehler 1. Art zu begehen steigt. Ultimativ könnte das dazu führen, dass man die Nullhypothese fälschlicherweise ablehnt, also Unterschiede unterstellt, die nicht existieren.
Aber keine Angst, R hat eine eingebaute Funktion namens “p.adjust()“. Es gibt für p.adjust() verschiedene Argumente, zumeist wählt man die konservativste “bonferroni”. Wird kein Argument übergeben, wird nach der etwas weniger strengen Holm-Methode korrigiert. Weitere Informationen zur Adjustierung des p-Wertes gibt es hier. Der Code zum paarweisen Vergleich sowie dem Anpassen des p-Wertes ist folgender:
pairwise.t.test(data_anova$Ruhepuls,data_anova$Trainingsgruppe,
p.adjust="bonferroni")
Als Ergebnis erhält man eine kleine Übersichtstabelle, die nur p-Werte enthält. Diese sind adjustiert nach Bonferroni, wie in der letzten Zeile zu erkennen ist.
Pairwise comparisons using t tests with pooled SD
data: data_anova$Ruhepuls and data_anova$Trainingsgruppe
0 1
1 0.22391 -
2 0.00097 0.11798
P value adjustment method: bonferroni
In der obigen Tabelle kann man folgendes erkennen:
- Der Unterschied zwischen der Gruppe 0 und der Gruppe 1 weist eine adjustierte Signifikanz von p = 0,22391 aus. Für diese beiden Gruppen kann die Nullhypothese keines Unterschiedes demzufolge nicht abgelehnt werden.
- Für den Unterschied zwischen Gruppe 1 und Gruppe 2 ist die adjustierte Signifikanz p = 0,11798. Auch hier kann die Nullhypothese keines Unterschiedes nicht verworfen werden.
- Für den Unterschied zwischen Gruppe 0 und Gruppe 2 ist allerdings eine adjustierte Signifikanz von p = 0,00097 zu erkennen. Die Nullhypothese (kein Unterschied) wird zugunsten der Alternativhypothese (Vorhandensein eines Unterschiedes) verworfen. Der Unterschied ist statistisch signifikant.
Im Ergebnis kann festgehalten werden, dass lediglich zwischen Gruppe 0 (wenig trainiert) und Gruppe 2 (stark trainiert) ein statistisch signifikanter Unterschied hinsichtlich des Ruhepulses existiert. Kontrolliert für die Mehrfachtestung unterscheiden nur sie sich statistisch signifikant voneinander.
3.5 Effektstärke der ANOVA
Die Effektstärke f wird von R nicht mit ausgegeben. f gibt an, wie stark der gefundene statistisch signifikante Effekt der ANOVA ist. Wie wir aber bereits festgestellt haben, interessiert uns ohnehin eher das Ergebnis der post-hoc-Analyse. Dennoch kann man den f-Wert berechnen, der sich aus Eta² ergibt, wie folgende Formel aus Cohen (1988), S. 284 zeigt: